56 research outputs found

    Toward decoupling the selection of compression algorithms from quality constraints

    Get PDF
    Data intense scientific domains use data compression to reduce the storage space needed. Lossless data compression preserves the original information accurately but on the domain of climate data usually yields a compression factor of only 2:1. Lossy data compression can achieve much higher compression rates depending on the tolerable error/precision needed. Therefore, the field of lossy compression is still subject to active research. From the perspective of a scientist, the compression algorithm does not matter but the qualitative information about the implied loss of precision of data is a concern. With the Scientific Compression Library (SCIL), we are developing a meta-compressor that allows users to set various quantities that define the acceptable error and the expected performance behavior. The ongoing work a preliminary stage for the design of an automatic compression algorithm selector. The task of this missing key component is the construction of appropriate chains of algorithms to yield the users requirements. This approach is a crucial step towards a scientifically safe use of much-needed lossy data compression, because it disentangles the tasks of determining scientific ground characteristics of tolerable noise, from the task of determining an optimal compression strategy given target noise levels and constraints. Future algorithms are used without change in the application code, once they are integrated into SCIL. In this paper, we describe the user interfaces and quantities, two compression algorithms and evaluate SCIL’s ability for compressing climate data. This will show that the novel algorithms are competitive with state-of-the-art compressors ZFP and SZ and illustrate that the best algorithm depends on user settings and data properties

    Mediation of the association between vascular risk factors and depressive symptoms by c-reactive protein: Longitudinal evidence from the UK Biobank

    Get PDF
    People with vascular risk factors (VRFs) are at higher risk for depressive symptoms. Given recent findings implicating low-grade systemic inflammation in both vascular and mental health, this study examined the extent to which the VRF–depressive symptom association might be mediated by low-grade systemic inflammation. To this end, we analysed longitudinal data of 9,034 participants from the UK Biobank (mean age = 56.54 years), who took part in three consecutive assessments over the course of about 8 years. Cumulative VRF burden at baseline was defined as the presence of 5 VRFs (hypertension, obesity, hypercholesterolemia, diabetes, and smoking). Low-grade systemic inflammation was assessed using serum-derived C-reactive protein (CRP) and depressive symptoms were measured using the Patient Health Questionnaire-9 (PHQ-9). We performed mediation models using longitudinal data and a path analytic framework, while controlling for age, gender, racial-ethnic background, socioeconomic status, and baseline mood. VRFs at baseline showed a small association with higher depressive symptoms at follow-up (total effect = 0.014, 95% CI [0.007; 0.021]). CRP mediated this association (indirect effect = 0.003, 95% CI [0.001; 0.005]) and accounted for 20.10% of the total effect of VRF burden on depressive symptoms. Exploratory analyses taking a symptom-based approach revealed that mediating pathways pertained to specific depressive symptoms: tiredness and changes in appetite. These results suggest that the small association between VRF burden and depressive symptoms may be partly explained by the inflammation-promoting effects of VRFs, which might promote a specific symptom-profile of depression

    Rapid volumetric brain changes after acute psychosocial stress

    Get PDF
    Stress is an important trigger for brain plasticity: Acute stress can rapidly affect brain activity and functional connectivity, and chronic or pathological stress has been associated with structural brain changes. Measures of structural magnetic resonance imaging (MRI) can be modified by short-term motor learning or visual stimulation, suggesting that they also capture rapid brain changes. Here, we investigated volumetric brain changes (together with changes in T1 relaxation rate and cerebral blood flow) after acute stress in humans as well as their relation to psychophysiological stress measures.Sixty-seven healthy men (25.8±2.7 years) completed a standardized psychosocial laboratory stressor (Trier Social Stress Test) or a control version while blood, saliva, heart rate, and psychometrics were sampled. Structural MRI (T1 mapping / MP2RAGE sequence) at 3T was acquired 45 min before and 90 min after intervention onset. Grey matter volume (GMV) changes were analysed using voxel-based morphometry. Associations with endocrine, autonomic, and subjective stress measures were tested with linear models.We found significant group-by-time interactions in several brain clusters including anterior/mid-cingulate cortices and bilateral insula: GMV was increased in the stress group relative to the control group, in which several clusters showed a GMV decrease. We found a significant group-by-time interaction for cerebral blood flow, and a main effect of time for T1 values (longitudinal relaxation time). In addition, GMV changes were significantly associated with state anxiety and heart rate variability changes.Such rapid GMV changes assessed with VBM may be induced by local tissue adaptations to changes in energy demand following neural activity. Our findings suggest that endogenous brain changes are counteracted by acute psychosocial stress, which emphasizes the importance of considering homeodynamic processes and generally highlights the influence of stress on the brain

    Positivity in younger and in older age: Associations with future time perspective and socioemotional functioning

    Get PDF
    Aging has been associated with a motivational shift to positive over negative information (i.e., positivity effect), which is often explained by a limited future time perspective (FTP) within the framework of socioemotional selectivity theory (SST). However, whether a limited FTP functions similarly in younger and older adults, and whether inter-individual differences in socioemotional functioning are similarly associated with preference for positive information (i.e., positivity) is still not clear. We investigated younger (20–35 years, N = 73) and older (60–75 years, N = 56) adults’ gaze preferences on pairs of happy, angry, sad, and neutral faces using an eye-tracking system. We additionally assessed several parameters potentially underlying inter-individual differences in emotion processing such as FTP, stress, cognitive functioning, social support, emotion regulation, and well-being. While we found no age-related differences in positivity when the entire trial duration was considered, older adults showed longer fixations on the more positive face in later stages of processing (i.e., positivity shifts). This allocation of resources toward more positive stimuli might serve an emotion regulatory purpose and seems consistent with the SST. However, our findings suggest that age moderates the relationship between FTP and positivity shifts, such that the relationship between FTP and positivity preferences was negative in older, and positive in younger adults, potentially stemming from an age-related differential meaning of the FTP construct across age. Furthermore, our exploratory analyses showed that along with the age and FTP interaction, lower levels of worry also played a significant role in positivity shifts. We conclude that positivity effects cannot be solely explained by aging, or the associated reduced FTP per se, but is rather determined by a complex interplay of psychosocial and emotional features

    Macro-scale patterns in functional connectivity associated with ongoing thought patterns and dispositional traits

    Get PDF
    Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest provide insight into the organisation of neural function, how these differentiate individuals based on their traits, and the neural basis of different types of self-generated thoughts. Although brain activity during wakeful rest is valuable for understanding important features of human cognition, its unconstrained nature makes it difficult to disentangle neural features related to personality traits from those related to the thoughts occurring at rest. Our study builds on recent perspectives from work on ongoing conscious thought that highlight the interactions between three brain networks - ventral and dorsal attention networks, as well as the default mode network. We combined measures of personality with state-of-the-art indices of ongoing thoughts at rest and brain imaging analysis, and explored whether this ‘tri-partite’ view can provide a framework within which to understand the contribution of states and traits to observed patterns of neural activity at rest. To capture macro-scale relationships between different brain systems, we calculated cortical gradients to describe brain organisation in a low dimensional space. Our analysis established that for more introverted individuals, regions of the ventral attention network were functionally more aligned to regions of the somatomotor system and the default mode network. At the same time, a pattern of detailed self-generated thought was associated with a decoupling of regions of dorsal attention from regions in the default mode network. Our study, therefore, establishes interactions between attention systems and the default mode network are important influences on ongoing thought at rest and highlights the value of integrating contemporary perspectives on conscious experience when understanding patterns of brain activity at rest
    • 

    corecore